

Welcome to scaraplate’s documentation!

	Documentation

	https://scaraplate.readthedocs.io/

	Source Code

	https://github.com/rambler-digital-solutions/scaraplate

	Issue Tracker

	https://github.com/rambler-digital-solutions/scaraplate/issues

	PyPI

	https://pypi.org/project/scaraplate/

Introduction

Scaraplate is a wrapper around cookiecutter [https://cookiecutter.readthedocs.io/en/2.2.3/README.html]
which allows to repeatedly rollup project templates onto concrete projects.

Cookiecutter is a great tool which allows to create projects from templates.
However, it lacks ability to update the already created projects from updated
templates. Scaraplate provides a solution to this problem.

To use scaraplate, you would have to add a scaraplate.yaml file near
the cookiecutter.json of your cookiecutter template [https://cookiecutter.readthedocs.io/en/2.2.3/overview.html].
Then, to rollup the changes from the updated template, you will need
to simply call this command (which can even be automated!):

scaraplate rollup ./path/to/template ./path/to/project --no-input

This allows to easily (and automatically) sync the projects from the template,
greatly simplifying the unification of the projects’ structure.

CI pipelines, code linting settings, test runners, directory structures,
artifacts building tend to greatly vary between the projects.
Once described in the template which is easy to rollup onto the specific
projects, projects unification becomes a trivial task. Everything can be
defined in the template just once and then regularly be synced onto your
projects, see Rollup Automation.

How it works

The scaraplate rollup command does the following:

	Retrieve cookiecutter template variables from the previous rollup
(see Scaraplate Template).

	Create a temporary dir, apply cookiecutter command with the retrieved
variables to create a new temporary project.

	For each file in the temporary project, apply a strategy
(see Strategies) which merges the file from the temporary project
with the corresponding file in the target project.

Only the files which exist in the temporary project are touched by
scaraplate in the target project.

The key component of scaraplate are the strategies.

Note that none of the strategies use git history or any git-like
merging. In fact, scaraplate strategies make no assumptions about
the code versioning system used by the target project.
Instead, the merging between the files is defined solely by strategies
which generate the output based on the two files and the settings in
the scaraplate.yaml.

Scaraplate is quite extensible. Many parts are replaceable with custom
implementations in Python.

Quickstart

scaraplate requires Python 3.7 or newer.

Installation:

pip install scaraplate

Scaraplate also requires git to be installed in the system
(see Scaraplate Template).

To get started with scaraplate, you need to:

	Prepare a template (see Scaraplate Template and specifically
Scaraplate Example Template).

	Roll it up on your projects.

Project Name

[image: Scarab bug]
The project name is inspired by a bug which rolls up the brown balls
of … well, stuff, (the template) everywhere (the projects).

scarab + template = scaraplate

Contents:

	Scaraplate Template
	Scaraplate Example Template

	Cookiecutter Context Types

	Built-in Cookiecutter Context Types

	Template Maintenance

	Patterns

	Strategies
	Built-in Strategies

	Template Git Remotes
	Built-in Git Remotes

	Rollup Automation
	Supported automation scenarios

	Python API

Indices and tables

	Index

	Module Index

	Search Page

Scaraplate Template

Scaraplate uses cookiecutter under the hood, so the scaraplate template
is a cookiecutter template [https://cookiecutter.readthedocs.io/en/2.2.3/overview.html] with
the following properties:

	There must be a scaraplate.yaml config in the root of
the template dir (near the cookiecutter.json).

	The template dir must be a git repo (because some strategies might render
URLs to the template project and HEAD commit, making it easy to find out
what template was used to rollup, see Template Git Remotes).

	The cookiecutter’s project dir must be called project_dest,
i.e. the template must reside in the {{cookiecutter.project_dest}}
directory.

	The template must contain a file which renders the current
cookiecutter context. Scaraplate then reads that context to re-apply
cookiecutter template on subsequent rollups
(see Cookiecutter Context Types).

scaraplate.yaml contains:

	strategies (see Strategies),

	cookiecutter context type (see Cookiecutter Context Types),

	template git remote (see Template Git Remotes).

Note

Neither scaraplate.yaml nor cookiecutter.json would get
to the target project. These two files exist only in the template
repo. The files that would get to the target project are located
in the inner {{cookiecutter.project_dest}} directory of the template repo.

scaraplate rollup has a --no-input switch which doesn’t ask for
cookiecutter context values. This can be used to automate rollups
when the cookiecutter context is already present in the target project
(i.e. scaraplate rollup has been applied before). But the first rollup
should be done without the --no-input option, so the cookiecutter
context values could be filled by hand interactively.

The arguments to the scaraplate rollup command must be local
directories (i.e. the template git repo must be cloned manually,
scaraplate doesn’t support retrieving templates from git remote directly).

Scaraplate Example Template

We maintain an example template for a new Python project here:
https://github.com/rambler-digital-solutions/scaraplate-example-template

You may use it as a starting point for creating your own scaraplate template.
Of course it doesn’t have to be for a Python project: the cookiecutter
template might be for anything. A Python project is just an example.

Creating a new project from the template

$ git clone https://github.com/rambler-digital-solutions/scaraplate-example-template.git
$ scaraplate rollup ./scaraplate-example-template ./myproject
`myproject1/.scaraplate.conf` file doesn't exist, continuing with an empty context...
`project_dest` must equal to "myproject"
project_dest [myproject]:
project_monorepo_name []:
python_package [myproject]:
metadata_name [myproject]:
metadata_author: Kostya Esmukov
metadata_author_email: kostya@esmukov.net
metadata_description: My example project
metadata_long_description [file: README.md]:
metadata_url [https://github.com/rambler-digital-solutions/myproject]:
coverage_fail_under [100]: 90
mypy_enabled [1]:
Done!
$ tree -a myproject
myproject
├── .editorconfig
├── .gitignore
├── .scaraplate.conf
├── MANIFEST.in
├── Makefile
├── README.md
├── mypy.ini
├── setup.cfg
├── setup.py
├── src
│ └── myproject
│ └── __init__.py
└── tests
 ├── __init__.py
 └── test_metadata.py

3 directories, 12 files

The example template also contains a project_monorepo_name variable
which simplifies creating subprojects in monorepos (e.g. a single git
repository for multiple projects). In this case scaraplate should be
applied to the inner projects:

$ scaraplate rollup ./scaraplate-example-template ./mymonorepo/innerproject
`mymonorepo/innerproject/.scaraplate.conf` file doesn't exist, continuing with an empty context...
`project_dest` must equal to "innerproject"
project_dest [innerproject]:
project_monorepo_name []: mymonorepo
python_package [mymonorepo_innerproject]:
metadata_name [mymonorepo-innerproject]:
metadata_author: Kostya Esmukov
metadata_author_email: kostya@esmukov.net
metadata_description: My example project in a monorepo
metadata_long_description [file: README.md]:
metadata_url [https://github.com/rambler-digital-solutions/mymonorepo]:
coverage_fail_under [100]: 90
mypy_enabled [1]:
Done!
$ tree -a mymonorepo
mymonorepo
└── innerproject
 ├── .editorconfig
 ├── .gitignore
 ├── .scaraplate.conf
 ├── MANIFEST.in
 ├── Makefile
 ├── README.md
 ├── mypy.ini
 ├── setup.cfg
 ├── setup.py
 ├── src
 │ └── mymonorepo_innerproject
 │ └── __init__.py
 └── tests
 ├── __init__.py
 └── test_metadata.py

4 directories, 12 files

Updating a project from the template

$ scaraplate rollup ./scaraplate-example-template ./myproject --no-input
Continuing with the following context from the `myproject/.scaraplate.conf` file:
{'_template': 'scaraplate-example-template',
 'coverage_fail_under': '90',
 'metadata_author': 'Kostya Esmukov',
 'metadata_author_email': 'kostya@esmukov.net',
 'metadata_description': 'My example project',
 'metadata_long_description': 'file: README.md',
 'metadata_name': 'myproject',
 'metadata_url': 'https://github.com/rambler-digital-solutions/myproject',
 'mypy_enabled': '1',
 'project_dest': 'myproject',
 'project_monorepo_name': '',
 'python_package': 'myproject'}
Done!

Cookiecutter Context Types

cookiecutter context are the variables specified in cookiecutter.json,
which should be provided to cookiecutter to cut a project from the template.

The context should be generated by one of the files in the template,
so scaraplate could read these variables and rollup the template automatically
(i.e. without asking for these variables).

The default context reader is ScaraplateConf, but a custom one
might be specified in scaraplate.yaml like this:

cookiecutter_context_type: scaraplate.cookiecutter.SetupCfg

	
class scaraplate.cookiecutter.CookieCutterContext(target_path: pathlib.Path)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

The abstract base class for retrieving cookiecutter context from
the target project.

This class can be extended to provide a custom implementation of
the context reader.

	
__init__(target_path: pathlib.Path) → None

	Init the context reader.

	
read() → NewType.<locals>.new_type

	Retrieve the context.

If the target file doesn’t exist, FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError]
must be raised.

If the file doesn’t contain the context, an empty dict
should be returned.

Built-in Cookiecutter Context Types

	
class scaraplate.cookiecutter.ScaraplateConf(target_path: pathlib.Path)

	Bases: scaraplate.cookiecutter.CookieCutterContext

A default context reader which assumes that the cookiecutter
template contains the following file named .scaraplate.conf
in the root of the project dir:

[cookiecutter_context]
{%- for key, value in cookiecutter.items()|sort %}
{%- if key not in ('_output_dir',) %}
{{ key }} = {{ value }}
{%- endif %}
{%- endfor %}

Cookiecutter context would be rendered in the target project by this
file, and this class is able to retrieve that context from it.

	
class scaraplate.cookiecutter.SetupCfg(target_path: pathlib.Path)

	Bases: scaraplate.cookiecutter.CookieCutterContext

A context reader which retrieves the cookiecutter context from
a section in setup.cfg file.

The setup.cfg file must be in the cookiecutter template and must
contain the following section:

[tool:cookiecutter_context]
{%- for key, value in cookiecutter.items()|sort %}
{%- if key not in ('_output_dir',) %}
{{ key }} = {{ value }}
{%- endif %}
{%- endfor %}

Template Maintenance

Given that scaraplate provides ability to update the already created
projects from the updated templates, it’s worth discussing the maintenance
of a scaraplate template.

Removing a template variable

Template variables could be used as feature flags
to gradually introduce some changes in the templates which some target
projects might not use (yet) by disabling the flag.

But once the migration is complete, you might want to remove the no longer
needed variable.

Fortunately this is very simple: just stop using it in the template and
remove it from cookiecutter.json. On the next scaraplate rollup
the removed variable will be automatically removed from
the cookiecutter context file.

Adding a new template variable

The process for adding a new variable is the same as for removing one:
just add it to the cookiecutter.json and you can start using it in
the template.

If the next scaraplate rollup is run with --no-input, the new
variable will have the default value as specified in cookiecutter.json.
If you need a different value, you have 2 options:

	Run scraplate rollup without the --no-input flag so the value
for the new variable could be asked interactively.

	Manually add the value to
the cookiecutter context section
so the next rollup could pick it up.

Restructuring files

Scaraplate strategies intentionally don’t provide support for anything
more complex than a simple file-to-file change. It means that a scaraplate
template cannot:

	Delete or move files in the target project;

	Take multiple files and union them.

The reason is simple: such operations are always the one-time ones so it
is just easier to perform them manually once than to maintain that logic
in the template.

Patterns

This section contains some patterns which might be helpful for
creating and maintaining a scaraplate template.

Feature flags

Let’s say you have a template which you have applied to dozens of your
projects.

And now you want to start gradually introducing a new feature, let it
be a new linter.

You probably would not want to start using the new thing everywhere at once.
Instead, usually you start with one or two projects, gain experience
and then start rolling it up on the other projects.

For that you can use template variables as feature flags.
The example template contains
a mypy_enabled variable which demonstrates this concept. Basically
it is a regular cookiecutter variable, which can take different values
in the target projects and thus affect the template by enabling or disabling
the new feature.

Include files

Consider Makefile. On one hand, you would definitely want to have some
make targets to come from the template; on the other hand, you might need
to introduce custom make targets in some projects. Coming up with a scaraplate
strategy which could merge such a file would be quite difficult.

Fortunately, Makefile allows to include other files. So the solution
is quite trivial: have Makefile synced from the template (with
the scaraplate.strategies.Overwrite strategy), and include
a Makefile.inc file from there which will not be overwritten by the template.
This concept is demonstrated in the example template.

Manual merging

Sometimes you need to merge some files which might be modified in the target
projects and for which there’s no suitable strategy yet. In this case
you can use scaraplate.strategies.TemplateHash strategy as
a temporary solution: it would overwrite the file each time a new
git commit is added to the template, but keep the file unchanged since
the last rollup of the same template commit.

The example template uses this
approach for setup.py.

Create files conditionally

Cookiecutter hooks [https://cookiecutter.readthedocs.io/en/2.2.3/advanced/hooks.html] can be used
to post-process the generated temporary project.
For example, you might want to skip some files from the template
depending on the variables.

The example template contains
an example hook which deletes mypy.ini file when the mypy_enabled
variable is not set to 1.

Strategies

Strategies do the merging between the files from template and the target.

Strategies are specified in the scaraplate.yaml file located in the root
of the template dir.

Sample scaraplate.yaml excerpt:

default_strategy: scaraplate.strategies.Overwrite
strategies_mapping:
 setup.py: scaraplate.strategies.TemplateHash
 src/*/__init__.py: scaraplate.strategies.IfMissing
 package.json:
 strategy: mypackage.mymodule.MyPackageJson
 config:
 my_key: True
 "src/{{ cookiecutter.myvariable }}.md": scaraplate.strategies.IfMissing

The strategy should be an importable Python class which implements
Strategy.

default_strategy and strategies_mapping keys are the required ones.

The strategy value might be either a string (specifying a Python class),
or a dict of two keys – strategy and config. The first form
is just a shortcut for specifying a strategy with an empty config.

config would be passed to the Strategy’s __init__ which would
be validated with the inner Schema class.

	
class scaraplate.strategies.Strategy

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

The abstract base class for a scaraplate Strategy.

To implement and use a custom strategy, the following needs to be done:

	Create a new Python class which implements Strategy

	Override the inner Schema class if you need
to configure your strategy from scaraplate.yaml.

	Implement the apply method.

Assuming that the new strategy class is importable in the Python
environment in which scaraplate is run, to use the strategy
you need to specify it in scaraplate.yaml, e.g.

strategies_mapping:
 myfile.txt: mypackage.mymodule.MyStrategy

	
class Schema

	An empty default schema which doesn’t accept any parameters.

	
__init__(*, target_contents: Optional[BinaryIO], template_contents: BinaryIO, template_meta: scaraplate.template.TemplateMeta, config: Dict[str, Any]) → None

	Init the strategy.

	Parameters

	
	target_contents – The file contents in the target project.
None if the file doesn’t exist.

	template_contents – The file contents from the template
(after cookiecutter is applied).

	template_meta – Template metadata,
see scaraplate.template.TemplateMeta.

	config – The strategy config from scaraplate.yaml.
It is validated in this __init__ with the inner
Schema class.

	
apply() → BinaryIO

	Apply the Strategy.

	Returns

	The resulting file contents which would overwrite
the target file.

Built-in Strategies

	
class scaraplate.strategies.Overwrite

	Bases: scaraplate.strategies.Strategy

A simple strategy which always overwrites the target files
with the ones from the template.

	
class Schema

	An empty default schema which doesn’t accept any parameters.

	
class scaraplate.strategies.IfMissing

	Bases: scaraplate.strategies.Strategy

A strategy which writes the file from the template only
if it doesn’t exist in target.

	
class Schema

	An empty default schema which doesn’t accept any parameters.

	
class scaraplate.strategies.SortedUniqueLines

	Bases: scaraplate.strategies.Strategy

A strategy which combines both template and target files,
sorts the combined lines and keeps only unique ones.

However, the comments in the beginning of the files are treated
differently. They would be stripped from the target and replaced
with the ones from the template. The most common usecase for this
are the License headers.

Sample scaraplate.yaml excerpt:

strategies_mapping:
 MANIFEST.in:
 strategy: scaraplate.strategies.SortedUniqueLines
 .gitignore:
 strategy: scaraplate.strategies.SortedUniqueLines

	
class Schema

	Allowed params:

	comment_pattern [^ *([;#%]|//)] – a PCRE pattern which should
match the line with a comment.

	
class scaraplate.strategies.TemplateHash

	Bases: scaraplate.strategies.Strategy

A strategy which appends to the target file a git commit hash of
the template being applied; and the subsequent applications of
the same template for this file are ignored until the HEAD commit
of the template changes.

This strategy is useful when a file needs to be different from
the template but there’s no suitable automated strategy yet,
so it should be manually resynced on template updates.

This strategy overwrites the target file on each new commit
in the template. There’s also a RenderedTemplateFileHash
strategy which does it less frequently: only when the source file
from the template has changes.

Sample scaraplate.yaml excerpt:

strategies_mapping:
 setup.py:
 strategy: scaraplate.strategies.TemplateHash
 config:
 line_comment_start: '#'
 max_line_length: 87
 max_line_linter_ignore_mark: ' # noqa'
 Jenkinsfile:
 strategy: scaraplate.strategies.TemplateHash
 config:
 line_comment_start: '//'

This would result in the following:

setup.py:

...file contents...

Generated by https://github.com/rambler-digital-solutions/scaraplate
From https://github.com/rambler-digital-solutions/scaraplate-example-template/commit/11 # noqa

Jenkinsfile:

...file contents...

// Generated by https://github.com/rambler-digital-solutions/scaraplate
// From https://github.com/rambler-digital-solutions/scaraplate-example-template/commit/11

	
class Schema

	Allowed params:

	line_comment_start [#] – The prefix which should be used
to start a line comment.

	max_line_length [None] – The maximum line length for
the appended line comments after which
the max_line_linter_ignore_mark suffix should be added.

	max_line_linter_ignore_mark [# noqa] – The linter’s
line ignore mark for the appended line comments which are
longer than max_line_length columns. The default # noqa
mark silences flake8.

	
class scaraplate.strategies.RenderedTemplateFileHash

	Bases: scaraplate.strategies.TemplateHash

A strategy which appends to the target file a hash of
the rendered template file; and the subsequent applications of
the same template for this file are ignored until the rendered
file has changes.

This strategy is similar to TemplateHash with the difference
that the target file is rewritten less frequently: only when
the hash of the source file from the template is changed.

New in version 0.2.

Sample scaraplate.yaml excerpt:

strategies_mapping:
 setup.py:
 strategy: scaraplate.strategies.RenderedTemplateFileHash
 config:
 line_comment_start: '#'
 max_line_length: 87
 max_line_linter_ignore_mark: ' # noqa'
 Jenkinsfile:
 strategy: scaraplate.strategies.RenderedTemplateFileHash
 config:
 line_comment_start: '//'

This would result in the following:

setup.py:

...file contents...

Generated by https://github.com/rambler-digital-solutions/scaraplate
RenderedTemplateFileHash d2671228e3dfc3e663bfaf9b5b151ce8
From https://github.com/rambler-digital-solutions/scaraplate-example-template/commit/11 # noqa

Jenkinsfile:

...file contents...

// Generated by https://github.com/rambler-digital-solutions/scaraplate
// RenderedTemplateFileHash d2as1228eb7233e663bfaf9b5b151ce8
// From https://github.com/rambler-digital-solutions/scaraplate-example-template/commit/11

	
class Schema

	Allowed params:

	line_comment_start [#] – The prefix which should be used
to start a line comment.

	max_line_length [None] – The maximum line length for
the appended line comments after which
the max_line_linter_ignore_mark suffix should be added.

	max_line_linter_ignore_mark [# noqa] – The linter’s
line ignore mark for the appended line comments which are
longer than max_line_length columns. The default # noqa
mark silences flake8.

	
class scaraplate.strategies.ConfigParserMerge

	Bases: scaraplate.strategies.Strategy

A strategy which merges INI-like files (with configparser [https://docs.python.org/3/library/configparser.html#module-configparser]).

The resulting file is the one from the template with
the following modifications:

	Comments are stripped

	INI file is reformatted (whitespaces are cleaned, sections
and keys are sorted)

	Sections specified in the preserve_sections config list are
preserved from the target file.

	Keys specified in the preserve_keys config list are
preserved from the target file.

This strategy cannot be used to merge config files which contain
keys without a preceding section declaration
(e.g. .editorconfig won’t work).

Sample scaraplate.yaml excerpt:

strategies_mapping:
 .pylintrc:
 strategy: scaraplate.strategies.ConfigParserMerge
 config:
 preserve_sections: []
 preserve_keys:
 - sections: ^MASTER$
 keys: ^extension-pkg-whitelist$
 - sections: ^TYPECHECK$
 keys: ^ignored-

 tox.ini:
 strategy: scaraplate.strategies.ConfigParserMerge
 config:
 preserve_sections:
 - sections: ^tox$
 preserve_keys:
 - sections: ^testenv
 keys: ^extras$

 pytest.ini:
 strategy: scaraplate.strategies.ConfigParserMerge
 config:
 preserve_sections: []
 preserve_keys:
 - sections: ^pytest$
 keys: ^python_files$

 .isort.cfg:
 strategy: scaraplate.strategies.ConfigParserMerge
 config:
 preserve_sections: []
 preserve_keys:
 - sections: ^settings$
 keys: ^known_third_party$

	
class Schema

	Allowed params:

	preserve_keys (required) – the list of config keys
which should be preserved from the target file. Values schema:

	sections (required) – a PCRE pattern matching
sections containing the keys to preserve.

	keys (required) – a PCRE pattern matching keys
in the matched sections.

	preserve_sections (required) – the list of config sections
which should be preserved from the target file. If the matching
section exists in the template, it would be fully overwritten.
Values schema:

	sections (required) – a PCRE pattern matching
sections which should be preserved from the target.

	excluded_keys [None] – a PCRE pattern matching
the keys which should not be overwritten in the template
when preserving the section.

	
class scaraplate.strategies.SetupCfgMerge

	Bases: scaraplate.strategies.ConfigParserMerge

A strategy which merges the Python’s setup.cfg file.

Based on the ConfigParserMerge strategy, additionally
containing a merge_requirements config option for merging
the lists of Python requirements between the files.

Sample scaraplate.yaml excerpt:

strategies_mapping:
 setup.cfg:
 strategy: scaraplate.strategies.SetupCfgMerge
 config:
 merge_requirements:
 - sections: ^options$
 keys: ^install_requires$
 - sections: ^options\.extras_require$
 keys: ^develop$
 preserve_keys:
 - sections: ^tool:pytest$
 keys: ^testpaths$
 - sections: ^build$
 keys: ^executable$
 preserve_sections:
 - sections: ^mypy-
 - sections: ^options\.data_files$
 - sections: ^options\.entry_points$
 - sections: ^options\.extras_require$

	
class Schema

	Allowed params:

	preserve_keys (required) – the list of config keys
which should be preserved from the target file. Values schema:

	sections (required) – a PCRE pattern matching
sections containing the keys to preserve.

	keys (required) – a PCRE pattern matching keys
in the matched sections.

	preserve_sections (required) – the list of config sections
which should be preserved from the target file. If the matching
section exists in the template, it would be fully overwritten.
Values schema:

	sections (required) – a PCRE pattern matching
sections which should be preserved from the target.

	excluded_keys [None] – a PCRE pattern matching
the keys which should not be overwritten in the template
when preserving the section.

	merge_requirements (required) – the list of config
keys containing the lists of Python requirements which should
be merged together. Values schema:

	sections (required) – a PCRE pattern matching
sections containing the keys with requirements.

	keys (required) – a PCRE pattern matching keys
in the matched sections.

Template Git Remotes

Scaraplate assumes that the template dir is a git repo.

Strategies receive a scaraplate.template.TemplateMeta instance
which contains URLs to the template’s project and the HEAD git commit
on a git remote’s web interface (such as GitHub). These URLs might be
rendered in the target files by the strategies.

Scaraplate has built-in support for some popular git remotes. The remote
is attempted to be detected automatically, but if that fails, it should
be specified manually.

Sample scaraplate.yaml excerpt:

git_remote_type: scaraplate.gitremotes.GitHub

	
class scaraplate.template.TemplateMeta

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Metadata of the template’s git repo status.

	
commit_hash

	Alias for field number 1

	
commit_url

	Alias for field number 2

	
git_project_url

	Alias for field number 0

	
head_ref

	Alias for field number 4

	
is_git_dirty

	Alias for field number 3

	
class scaraplate.gitremotes.GitRemote(remote: str)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Base class for a git remote implementation, which generates http
URLs from a git remote (either ssh of http) and a commit hash.

	
__init__(remote: str) → None

	Init the git remote.

	Parameters

	remote – A git remote, either ssh or http(s).

	
commit_url(commit_hash: str) → str

	Return a commit URL at the given git remote.

	Parameters

	commit_hash – Git commit hash.

	
project_url() → str

	Return a project URL at the given git remote.

Built-in Git Remotes

	
class scaraplate.gitremotes.GitLab(remote: str)

	Bases: scaraplate.gitremotes.GitRemote

GitLab git remote implementation.

	
class scaraplate.gitremotes.GitHub(remote: str)

	Bases: scaraplate.gitremotes.GitRemote

GitHub git remote implementation.

	
class scaraplate.gitremotes.BitBucket(remote: str)

	Bases: scaraplate.gitremotes.GitRemote

BitBucket git remote implementation.

Rollup Automation

Once you get comfortable with manual rollups, you might want to set up
regularly executed automated rollups.

At this moment scaraplate doesn’t provide a CLI for that, but there’s
a quite extensible Python code which simplifies implementation of custom
scenarios.

Supported automation scenarios

GitLab Merge Request

GitLab integration requires python-gitlab [https://python-gitlab.readthedocs.io]
package, which can be installed with:

pip install 'scaraplate[gitlab]'

Sample rollup.py script:

from scaraplate import automatic_rollup
from scaraplate.automation.gitlab import (
 GitLabCloneTemplateVCS,
 GitLabMRProjectVCS,
)

automatic_rollup(
 template_vcs_ctx=GitLabCloneTemplateVCS.clone(
 project_url="https://mygitlab.example.org/myorg/mytemplate",
 private_token="your_access_token",
 clone_ref="master",
),
 project_vcs_ctx=GitLabMRProjectVCS.clone(
 gitlab_url="https://mygitlab.example.org",
 full_project_name="myorg/mytargetproject",
 private_token="your_access_token",
 changes_branch="scheduled-template-update",
 clone_ref="master",
),
)

This script would do the following:

	git clone the template repo to a tempdir;

	git clone the project repo to a tempdir;

	Run scaraplate rollup ... --no-input;

	Would do nothing if rollup didn’t change anything; otherwise it would
create a commit with the changes, push it to the scheduled-template-update
branch and open a GitLab Merge Request from this branch.

If a MR already exists, GitLabMRProjectVCS
does the following:

	A one-commit git diff is compared between the already existing MR’s branch
and the locally committed branch (in a tempdir). If diffs are equal,
nothing is done.

	If diffs are different, the existing MR’s branch is removed from the remote,
effectively closing the old MR, and a new branch is pushed, which
is followed by creation of a new MR.

To have this script run daily, crontab can be used. Assuming that the script
is located at /opt/rollup.py and the desired time for execution is 9:00,
it might look like this:

$ crontab -e
Add the following line:
00 9 * * * python3 /opt/rollup.py

Git push

GitLabCloneTemplateVCS and
GitLabMRProjectVCS are based off
GitCloneTemplateVCS and
GitCloneProjectVCS
correspondingly. GitLab classes add GitLab-specific git-clone URL
generation and Merge Request creation. The rest (git clone, commit, push)
is done in the GitCloneTemplateVCS
and GitCloneProjectVCS classes.

GitCloneTemplateVCS and
GitCloneProjectVCS classes work
with any git remote. If you’re okay with just pushing a branch with
updates (without opening a Merge Request/Pull Request), then you can
use the following:

Sample rollup.py script:

from scaraplate import automatic_rollup, GitCloneProjectVCS, GitCloneTemplateVCS

automatic_rollup(
 template_vcs_ctx=GitCloneTemplateVCS.clone(
 clone_url="https://github.com/rambler-digital-solutions/scaraplate-example-template.git",
 clone_ref="master",
),
 project_vcs_ctx=GitCloneProjectVCS.clone(
 clone_url="https://mygit.example.org/myrepo.git",
 clone_ref="master",
 changes_branch="scheduled-template-update",
 commit_author="scaraplate <yourorg@yourcompany>",
),
)

Python API

	
scaraplate.automation.base.automatic_rollup(*, template_vcs_ctx: AbstractContextManager[TemplateVCS], project_vcs_ctx: AbstractContextManager[ProjectVCS], extra_context: Optional[Mapping[str, str]] = None) → None

	The main function of the automated rollup implementation.

This function accepts two context managers, which should return
two classes: TemplateVCS and ProjectVCS,
which represent the cloned template and target project
correspondingly.

The context managers should prepare the repos, e.g. they should
create a temporary directory, clone a repo there, and produce
a TemplateVCS or ProjectVCS class instance.

This function then applies scaraplate rollup of the template
to the target project in no-input mode.
If the target project contains any changes (as reported by
ProjectVCS.is_dirty()), they will be committed by calling
ProjectVCS.commit_changes().

New in version 0.2.

	
class scaraplate.automation.base.TemplateVCS

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A base class representing a template retrieved from a VCS
(probably residing in a temporary directory).

The resulting directory with template must be within a git repository,
see Scaraplate Template for details. But it doesn’t mean that it must
be retrieved from git. Template might be retrieved from anywhere,
it just has to be in git at the end. That git repo will be used
to fill the TemplateMeta structure.

	
dest_path

	Path to the root directory of the template.

	
template_meta

	TemplateMeta filled using the template’s git repo.

	
class scaraplate.automation.base.ProjectVCS

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A base class representing a project retrieved from a VCS
(probably residing in a temporary directory).

The project might use any VCS, at this point there’re no assumptions
made by scaraplate about the VCS.

	
commit_changes(template_meta: scaraplate.template.TemplateMeta) → None

	Commit the changes made to the project. This method is
responsible for delivering the changes back to the place
the project was retrieved from. For example, if the project
is using git and it was cloned to a temporary directory,
then this method should commit the changes and push them back
to git remote.

This method will be called only if ProjectVCS.is_dirty()
has returned True.

	
dest_path

	Path to the root directory of the project.

	
is_dirty() → bool

	Tell whether the project has any changes not committed
to the VCS.

	
class scaraplate.automation.git.GitCloneTemplateVCS(template_path: pathlib.Path, template_meta: scaraplate.template.TemplateMeta)

	Bases: scaraplate.automation.base.TemplateVCS

A ready to use TemplateVCS implementation which:

	Uses git

	Clones a git repo with the template to a temporary directory
(which is cleaned up afterwards)

	Allows to specify an inner dir inside the git repo as the template
root (which is useful for monorepos)

	
classmethod clone(clone_url: str, *, clone_ref: Optional[str] = None, monorepo_inner_path: Optional[pathlib.Path] = None) → Iterator[scaraplate.automation.git.GitCloneTemplateVCS]

	Provides an instance of this class by issuing git clone
to a tempdir when entering the context manager. Returns a context
manager object which after __enter__ returns an instance
of this class.

	Parameters

	
	clone_url – Any valid git clone url.

	clone_ref – Git ref to checkout after clone
(i.e. branch or tag name).

	monorepo_inner_path – Path to the root dir of template
relative to the root of the repo. If None, the root of
the repo will be used as the root of template.

	
class scaraplate.automation.git.GitCloneProjectVCS(project_path: pathlib.Path, git: scaraplate.automation.git.Git, *, changes_branch: str, commit_author: str, commit_message_template: str)

	Bases: scaraplate.automation.base.ProjectVCS

A ready to use ProjectVCS implementation which:

	Uses git

	Clones a git repo with the project to a temporary directory
(which is cleaned up afterwards)

	Allows to specify an inner dir inside the git repo as the project
root (which is useful for monorepos)

	Implements ProjectVCS.commit_changes() as
git commit + git push.

	
classmethod clone(clone_url: str, *, clone_ref: Optional[str] = None, monorepo_inner_path: Optional[pathlib.Path] = None, changes_branch: str, commit_author: str, commit_message_template: str = 'Scheduled template update ({update_time:%Y-%m-%d})\n\n* scaraplate version: {scaraplate_version}\n* template commit: {template_meta.commit_url}\n* template ref: {template_meta.head_ref}\n') → Iterator[scaraplate.automation.git.GitCloneProjectVCS]

	Provides an instance of this class by issuing git clone
to a tempdir when entering the context manager. Returns a context
manager object which after __enter__ returns an instance
of this class.

	Parameters

	
	clone_url – Any valid git clone url.

	clone_ref – Git ref to checkout after clone
(i.e. branch or tag name).

	monorepo_inner_path – Path to the root dir of project
relative to the root of the repo. If None, the root of
the repo will be used as the root of project.

	changes_branch – The branch name where the changes should be
pushed in the remote. Might be the same as clone_ref.
Note that this branch is never force-pushed. If upon push
the branch already exists in remote and its one-commit diff
is different from the one-commit diff of the just created
local branch, then the remote branch will be deleted and
the local branch will be pushed to replace the previous one.

	commit_author – Author name to use for git commit, e.g.
John Doe <john@example.org>.

	commit_message_template – str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] template
which is used to produce a commit message when committing
the changes. Available format variables are:

	update_time [datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]] – the time
of update

	scaraplate_version [str [https://docs.python.org/3/library/stdtypes.html#str]] – scaraplate package
version

	template_meta [TemplateMeta] – template meta
returned by TemplateVCS.template_meta()

	
class scaraplate.automation.gitlab.GitLabCloneTemplateVCS(git_clone: scaraplate.automation.git.GitCloneTemplateVCS)

	Bases: scaraplate.automation.base.TemplateVCS

A class which extends GitCloneTemplateVCS with
GitLab-specific clone_url generation.

	
classmethod clone(project_url: str, private_token: Optional[str] = None, *, clone_ref: Optional[str] = None, monorepo_inner_path: Optional[pathlib.Path] = None) → Iterator[scaraplate.automation.gitlab.GitLabCloneTemplateVCS]

	Same as GitCloneTemplateVCS.clone() except that
clone_url is replaced with project_url and private_token.

The private_token allows to clone private repos, which are
visible only for an authenticated user.

	Parameters

	
	project_url – A URL to a GitLab project, e.g.
https://gitlab.example.org/myorganization/myproject.

	private_token – GitLab access token,
see https://docs.gitlab.com/ce/api/#oauth2-tokens.

	
class scaraplate.automation.gitlab.GitLabMRProjectVCS(git_clone: scaraplate.automation.git.GitCloneProjectVCS, *, gitlab_project, mr_title_template: str, mr_description_markdown_template: str)

	Bases: scaraplate.automation.base.ProjectVCS

A class which extends GitCloneProjectVCS with
GitLab-specific clone_url generation and opens a GitLab Merge Request
after git push.

	
classmethod clone(gitlab_url: str, full_project_name: str, private_token: str, *, mr_title_template: str = 'Scheduled template update ({update_time:%Y-%m-%d})', mr_description_markdown_template: str = '* scaraplate version: `{scaraplate_version}`\n* template commit: {template_meta.commit_url}\n* template ref: {template_meta.head_ref}\n', commit_author: Optional[str] = None, **kwargs) → Iterator[scaraplate.automation.gitlab.GitLabMRProjectVCS]

	Same as GitCloneProjectVCS.clone() with the following
exceptions:

	clone_url is replaced with gitlab_url, full_project_name
and private_token.

	A GitLab Merge Request (MR) is opened after a successful
git push.

The private_token allows to clone private repos, which are
visible only for an authenticated user.

As in GitCloneProjectVCS.clone(), the changes_branch
might be the same as clone_ref. In this case no MR will be
opened.

A MR will be created only if there’re any changes produced
by scaraplate rollup. If a changes_branch is already present
in remote (i.e. there is a previous automatic rollup which wasn’t
merged yet), there’re two possibilities:

	If one-commit diffs between the remote’s changes_branch
and the local changes_branch are the same, nothing
is done. It means that a MR already exists and it has the same
patch as the one which was just produced locally.

	If the diffs are different, the remote branch will be deleted,
effectively closing the old MR, and a new one will be pushed
instead, and a new MR will be opened.

The opened MRs are expected to be merged manually.

	Parameters

	
	gitlab_url – A URL to the GitLab instance, e.g.
https://gitlab.example.org.

	full_project_name – Project name within gitlab, e.g.
myorganization/myproject.

	private_token – GitLab access token,
see https://docs.gitlab.com/ce/api/#oauth2-tokens.

	mr_title_template – str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] template
which is used to produce a MR title.
Available format variables are:

	update_time [datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]] – the time
of update

	template_meta [TemplateMeta] – template meta
returned by TemplateVCS.template_meta()

	mr_description_markdown_template – str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] template
which is used to produce a MR description (which will be rendered
as markdown). Available format variables are:

	update_time [datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]] – the time
of update

	scaraplate_version [str [https://docs.python.org/3/library/stdtypes.html#str]] – scaraplate package
version

	template_meta [TemplateMeta] – template meta
returned by TemplateVCS.template_meta()

	commit_author – Author name to use for git commit, e.g.
John Doe <john@example.org>. If None, will be retrieved
from GitLab as the name of the currently authenticated user
(using private_token).

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 scaraplate	

 	
 	
 scaraplate.cookiecutter	

 	
 	
 scaraplate.gitremotes	

 	
 	
 scaraplate.strategies	

Index

 _
 | A
 | B
 | C
 | D
 | G
 | H
 | I
 | O
 | P
 | R
 | S
 | T

_

 	
 	__init__() (scaraplate.cookiecutter.CookieCutterContext method)

 	(scaraplate.gitremotes.GitRemote method)

 	(scaraplate.strategies.Strategy method)

A

 	
 	apply() (scaraplate.strategies.Strategy method)

 	
 	automatic_rollup() (in module scaraplate.automation.base)

B

 	
 	BitBucket (class in scaraplate.gitremotes)

C

 	
 	clone() (scaraplate.automation.git.GitCloneProjectVCS class method)

 	(scaraplate.automation.git.GitCloneTemplateVCS class method)

 	(scaraplate.automation.gitlab.GitLabCloneTemplateVCS class method)

 	(scaraplate.automation.gitlab.GitLabMRProjectVCS class method)

 	commit_changes() (scaraplate.automation.base.ProjectVCS method)

 	
 	commit_hash (scaraplate.template.TemplateMeta attribute)

 	commit_url (scaraplate.template.TemplateMeta attribute)

 	commit_url() (scaraplate.gitremotes.GitRemote method)

 	ConfigParserMerge (class in scaraplate.strategies)

 	ConfigParserMerge.Schema (class in scaraplate.strategies.ConfigParserMerge)

 	CookieCutterContext (class in scaraplate.cookiecutter)

D

 	
 	dest_path (scaraplate.automation.base.ProjectVCS attribute)

 	(scaraplate.automation.base.TemplateVCS attribute)

G

 	
 	git_project_url (scaraplate.template.TemplateMeta attribute)

 	GitCloneProjectVCS (class in scaraplate.automation.git)

 	GitCloneTemplateVCS (class in scaraplate.automation.git)

 	GitHub (class in scaraplate.gitremotes)

 	
 	GitLab (class in scaraplate.gitremotes)

 	GitLabCloneTemplateVCS (class in scaraplate.automation.gitlab)

 	GitLabMRProjectVCS (class in scaraplate.automation.gitlab)

 	GitRemote (class in scaraplate.gitremotes)

H

 	
 	head_ref (scaraplate.template.TemplateMeta attribute)

I

 	
 	IfMissing (class in scaraplate.strategies)

 	IfMissing.Schema (class in scaraplate.strategies.IfMissing)

 	
 	is_dirty() (scaraplate.automation.base.ProjectVCS method)

 	is_git_dirty (scaraplate.template.TemplateMeta attribute)

O

 	
 	Overwrite (class in scaraplate.strategies)

 	
 	Overwrite.Schema (class in scaraplate.strategies.Overwrite)

P

 	
 	project_url() (scaraplate.gitremotes.GitRemote method)

 	
 	ProjectVCS (class in scaraplate.automation.base)

R

 	
 	read() (scaraplate.cookiecutter.CookieCutterContext method)

 	
 	RenderedTemplateFileHash (class in scaraplate.strategies)

 	RenderedTemplateFileHash.Schema (class in scaraplate.strategies.RenderedTemplateFileHash)

S

 	
 	scaraplate.cookiecutter (module)

 	scaraplate.gitremotes (module)

 	scaraplate.strategies (module)

 	ScaraplateConf (class in scaraplate.cookiecutter)

 	SetupCfg (class in scaraplate.cookiecutter)

 	
 	SetupCfgMerge (class in scaraplate.strategies)

 	SetupCfgMerge.Schema (class in scaraplate.strategies.SetupCfgMerge)

 	SortedUniqueLines (class in scaraplate.strategies)

 	SortedUniqueLines.Schema (class in scaraplate.strategies.SortedUniqueLines)

 	Strategy (class in scaraplate.strategies)

 	Strategy.Schema (class in scaraplate.strategies.Strategy)

T

 	
 	template_meta (scaraplate.automation.base.TemplateVCS attribute)

 	TemplateHash (class in scaraplate.strategies)

 	
 	TemplateHash.Schema (class in scaraplate.strategies.TemplateHash)

 	TemplateMeta (class in scaraplate.template)

 	TemplateVCS (class in scaraplate.automation.base)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/minus.png

_static/plus.png

_images/scarab.jpg

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to scaraplate’s documentation!

 		
 Scaraplate Template

 		
 Scaraplate Example Template

 		
 Creating a new project from the template

 		
 Updating a project from the template

 		
 Cookiecutter Context Types

 		
 Built-in Cookiecutter Context Types

 		
 Template Maintenance

 		
 Removing a template variable

 		
 Adding a new template variable

 		
 Restructuring files

 		
 Patterns

 		
 Feature flags

 		
 Include files

 		
 Manual merging

 		
 Create files conditionally

 		
 Strategies

 		
 Built-in Strategies

 		
 Template Git Remotes

 		
 Built-in Git Remotes

 		
 Rollup Automation

 		
 Supported automation scenarios

 		
 GitLab Merge Request

 		
 Git push

 		
 Python API

_static/up.png

_static/scarab.jpg

_static/up-pressed.png

